CHAPTER 4: Combining Functions Examples Booklet
 40S Pre-Calculus

Winnipeg Adult Education Centre
January 2019

Unit Lessons

Lesson 1: Combining Functions Graphically

Lesson 2: Combining Functions Algebraically

Lesson 3: Introduction to Composite Functions

Lesson 4: Determining Restrictions on Composite Functions

Homework:

Most assignments for practice will be from your workbook: Pearson PreCalculus 12. Other assignments will be handed out for marks as needed.

Learning Outcomes

At the end of this unit, you should be able to:

- Sketch the graphs of functions that are the sum, difference, product, or quotient of two functions.
- Write the equations of functions that are the sum, difference, product, or quotient of other functions, then determine their domains.
- As well, estimate the range using graphing technology.
- Evaluate a composition of functions at a given x value.
- Determine an explicit equation for a composite function.
- Determine the domain of a composite function, including restrictions.

Sum

Difference

Product

Quotient

Function

Composite Function

Lesson 1: Combining Functions Graphically

Example 1: The graphs of $f(x)$ and $g(x)$ are shown. On the same grid, sketch the graph of the sum of these two functions: $y=f(x)+g(x)$.

Example 2: The graphs of $h(x)$ and $j(x)$ are shown. On the same grid, sketch the graph of the difference of these two functions: $y=h(x)-j(x)$.

Example 3: The graphs of $f(x)$ and $g(x)$ are shown. On the same grid, sketch the graph of the product of these two functions: $y=f(x) \cdot g(x)$.

What are the domains of $f(x), g(x)$, and $y=f(x) \cdot g(x)$?

Example 4: The graphs of $h(x)$ and $j(x)$ are shown. On the same grid, sketch the graph of the quotient of these two functions: $y=\frac{h(x)}{j(x)}$.

What are the domains of $h(x), j(x)$, and $y=\frac{h(x)}{j(x)}$?

Assignment Time! Work on p.268-1-3

Example 1: Use $f(x)=\sqrt{x-2}$ and $g(x)=x+1$.
a) State the domain of $f(x)$ and of $g(x)$.
b) Given that $m(x)=f(x)+g(x)$, write an explicit equation for $m(x)$, then determine its domain.
c) Given that $p(x)=f(x) \cdot g(x)$, write an explicit equation for $p(x)$, then determine its domain.
d) **OPTIONAL** Use graphing technology to graph $m(x)$ and $p(x)$, and use the graphs of each function to estimate the range of both functions.

Example 2: Use $f(x)=\sqrt{-x}$ and $g(x)=(x+2)^{2}$.
a) State the domain of $f(x)$ and of $g(x)$.
b) Given that $(x)=\frac{f(x)}{g(x)}$, write an explicit equation for $q(x)$, then determine its domain.
c) **OPTIONAL** Use graphing technology to graph $q(x)$, and use the graph to estimate the range of the function.

Example 3: Consider the function: $m(x)=2 x^{2}+3 x-7$.
a) Write explicit equations for three functions $f(x), g(x)$, and $n(x)$ so that $m(x)=f(x)+g(x)+n(x)$.
b) Write explicit equations for two functions $f(x)$ and $g(x)$ so that $m(x)=f(x)-g(x)$.

Example 4: Consider the function: $p(x)=x^{2}-2 x-15$.
a) Write explicit equations for two functions $f(x), g(x)$, so that $p(x)=f(x) \cdot g(x)$.
b) Given that $q(x)=x+3$, write explicit equations for two functions $f(x)$ and $g(x)$ so that $q(x)=\frac{f(x)}{g(x)}$.

Example 1: The tables below define two functions. Use these tables to determine the values requested below the tables.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	8
-1	3
0	0
1	-1
2	0

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
-2	3
-1	2
0	1
1	0
2	1

a) $f(g(2)$
b) $g(g(-1))$

Example 2: Given the graphs of $y=f(x)$ and $y=g(x)$, determine the values requested below the graphs.

a) $g(f(0))$
b) $f(g(1))$

Example 3: Given the functions $h(x)=\sqrt{x+5}$ and $m(x)=(x-1)^{2}$, determine the values requested below:
a) $m(h(4))$
b) $h(m(13))$

Example 4: Given $f(x)=x^{2}+3 x$ and $g(x)=3 x-5$, determine an explicit equation for each requested composite function, and state the domain of each composite function. (**OPTIONAL** Use graphing technology to graph each composite function and determine the range.)
a) $f(g(x))$
b) $g(f(x))$
c) $f(f(x))$

Lesson 4: Determining Restrictions on Composite Functions

Example 1: Use the functions $f(x)=2 x-1$ and $g(x)=x^{2}-2$.
a) State the domain of $f(x)$ and of $g(x)$.
b) Use graphing technology to sketch a graph of $y=g(f(x))$ and determine the domain of this composite function.
c) Use graphing technology to sketch a graph of $y=g(g(x))$ and determine the domain of this composite function.

Example 2: Given the functions $h(x)=\frac{1}{x-2}$ and $j(x)=x^{2}-x$, determine an explicit equation of each composite function below, then state its domain.
a) $j(h(x))$
b) $h(j(x))$
OPTIONAL Verify your answers using graphing technology.

Example 3: Given the functions $f(x)=\sqrt{x}$ and $g(x)=-x^{2}+2 x$, determine an explicit equation for each composite function below, then state its domain.
a) $g(f(x))$
b) $f(g(x))$
OPTIONAL Verify your answers using graphing technology.

Example 4: For each function, determine possible functions f and g so that $y=f(g(x))$.
a) $y=\frac{1}{\sqrt{x}}$
b) $y=|2 x-1|^{5}$

Assignment Time! Work on p.314-3, 4, 6, 8a, 10, MC 1\&2

