40S Pre-Calculus Math Trigonometry Unit Test v1

Name

/ 43 marks

Part I- Multiple Choice: Circle the BEST answer. (1 mark each)

1. Given sec $\theta = -\frac{4}{3}$ and $\tan \theta < 0$, which quadrant in which θ terminates?

- A) Quadrant I C) Quadrant III
- B) Quadrant II D) Quadrant IV
- 2. Given the point P(5, -1), what is the exact value of sec θ ?
 - A) $\frac{-1}{\sqrt{24}}$ B) $\frac{5}{\sqrt{26}}$ C) $\frac{-1}{5}$ D) none of the above
- 3. Identify the co-terminal of $\frac{2\pi}{5}$.
 - A) $\frac{-3\pi}{5}$ B) $\frac{-13\pi}{5}$ C) $\frac{7\pi}{5}$ D) $\frac{12\pi}{5}$
- 4. Consider the angle at a standard position $\theta = 2783^{\circ}$. What is its reference angle?
 - A) 263° C) 2520° B) 73° D) 83
- 5. Which of the following angles DO NOT have a reference angle of $\theta_R = 72^\circ$?
 - A) 252° C) -288°
 - B) 468° D) -144°

Part II- Short and Long Answers. Show your solution on the space provided.

7. Given the following angle measurements, state the reference angle. (2 marks) a) 591° b) 5.32 radians

6. Determine the exact value of cos 495°

(2 marks)

7. Determine the exact value of $\sec\left(\frac{13\pi}{6}\right)$.

(2 marks)

- 8. Consider the point, P(-3, -7), a) State the exact values of 6 trigonometric ratios. (6 marks) b) Determine θ for $[-2\pi, 2\pi]$. (2 marks)
- 9. Convert 1340° in radian measure in lowest terms. (1 mark)

10. Convert $-\frac{9\pi}{7}$ to the nearest degree. (1 mark)

11. Explain the difference between an angle measuring 5° and one angle measuring 5 radians. (1 mark)

12. Determine the exact value of $\cot \theta$ given that $\cos \theta = -\frac{5}{8}$ and $\sin \theta$ is positive. (2 marks)

13. Sketch $\theta = \frac{3\pi}{5}$ and determine the measures of angles that are co-terminal with θ for $-4\pi \le \theta \le 4\pi$. (3 marks)

14. Determine the exact values of six trig ratios for the angle 420°. (6 marks)

15. Determine the exact value of θ over $[-2\pi, 2\pi]$ of $\csc \theta = \frac{2}{\sqrt{3}}$. (4 marks)

16. If θ terminates in Quadrant IV and $\tan \theta = -\frac{3}{4}$, find the value of $\cos \theta$. (2 marks)

BONUS: Solve θ , given the equation $\sqrt{2}\csc\theta + 2 = 0$ for $-\pi \le \theta \le \pi$ (2 marks)