40S Pre-Calculus Math Trig Equation and Identity Test v1

Name

/ 41 marks

Multiple Choice: Circle the BEST answer.

1. Which is the general solution to the equation $2 \sin x = 1$?

A)
$$x = \frac{\pi}{6} + 2\pi k, k \in Z$$

B) $x = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$
C) $x = \frac{\pi}{3} + 2\pi k, k \in Z \text{ or } \frac{2\pi}{3} + 2\pi k, k \in Z$
D) $x = \frac{\pi}{6} + 2\pi k, k \in Z \text{ or } \frac{5\pi}{6} + 2\pi k, k \in Z$

2. Which of the following is **<u>NOT</u>** the solution of $\cos \theta = -\frac{\sqrt{3}}{2}$?

- A) 150°
- B) 510°
- C) $-\frac{11\pi}{6}$ D) $-\frac{5\pi}{6}$
- 3. Express $\cos^2(2x) \sin^2(2x)$ in terms of one circular function.
 - A) $\cos 2x$
 - B) $\cos 4x$
 - C) 1
 - D) none of the above
- 4. What is the value of $\csc^2 \frac{4\pi}{3}$?
 - A) $\frac{4}{3}$ B) $\frac{\sqrt{3}}{2}$ C) $-\frac{2}{\sqrt{3}}$ D) $\frac{9}{4}$
- 5. Given that $\tan \theta = 1$ and $\sec \theta > 0$, what is the value of θ ?
 - A) $\frac{\pi}{\frac{4}{4}}$ B) $\frac{7\pi}{4}$ C) 225° D) 135°

Short and Long Response Questions

6. Verify the equation
$$\frac{\sin x \cos x}{1 + \cos x} = \frac{1 - \cos x}{\tan x}$$
 is true when $x = \frac{\pi}{4}$ (4 marks)

7. Prove the following identities.

a)
$$\frac{1+\cos^2 x}{\sin^2 x} = 2\csc^2 x - 1$$
 (3 marks)

- 8. Given $\sin \alpha = -\frac{3}{5}$ and $\alpha \in QIV$, $\sin \beta = \frac{1}{4}$ and $\beta \in QII$, determine the value of :
 - a) $\sin(\alpha + \beta)$ (4 marks)

b) $\cos(2\beta)$

(3 marks)

c) $tan(2\alpha)$

(3 marks)

9. Solve each of the following equations over the indicated domain.

a)
$$\cot x = \frac{1}{\sqrt{3}} \text{ over } [-\pi, \pi]$$
 (3 marks)

b) $2\cos^2 x + 3\cos x = -1$ over $[0, 2\pi)$

(3 marks)

c) $\sin 2x = \sqrt{2} \sin x$ over $[0^{\circ}, 360^{\circ})$

(3 marks)

10. Find the exact value of $\cos 210^\circ$

(1 mark)

Bonus Question:

Given $2\cos^3 x - \cos^2 x - 2\cos x + 1 = 0$. Solve the equation for $x, 0 \le x \le 2\pi$. (3 marks)